If you can control a Mars rover from Houston, Texas… you can surely drive an SEM from across London

This post continues on from our last post ‘Back to the Future’ which explored how the Natural History Museum developed remote access to some of its laboratory equipment during lockdown. Here, Dr Joyce Townsend from Tate, describes her experience of using the equipment from home.

As I spend another groundhog day at home during the third lockdown and imminent first anniversary of the Covid-19 pandemic, remote access for running instruments at the Natural History Museum (NHM) seems like a concept that was developed just in time. I’ve been an electron microscope user and driver at the NHM for some 10 years now – certainly long enough to have used 2 or 3 models of variable pressure SEM (scanning electron microscope), two software packages, and three operating systems. My samples consist mainly of paint fragments on self-adhesive carbon stubs, interspersed with larger and more complex paint samples mounted in resin blocks and exposed as cross-sections, and a few outliers such as canvas, metals and plastics. Since they come mainly from artworks, anything large enough on the stub to spot by eye in a good light – provided such a small specimen is also representative – is the right size for SEM-EDX. I do sometimes seek assistance with imaging of canvas, or newly-applied and solvent-rich paint (high vacuum would make short work of its topography!), but in most cases I am more interested in elemental analysis to prove or disprove identifications of inorganic pigments and extenders from optical microscopy, and sometimes to reveal unexpected elements. High-resolution imaging is not usually my aim for many samples. A knowledge of historic pigments used in the west, and of a great variety of historic manufacturing processes, enables good inferences to be made about the compounds in the samples, in nearly all cases. My samples are at least fairly robust, and there are no issues with shelf life or storage temperature, as I deliver them to a masked figure emerging from the premises on freezing mornings.

My fellow conservation scientists and all my other colleagues with humanities backgrounds were vastly impressed when I announced, ‘If you can control a Mars rover from Houston, Texas, you can surely drive an SEM from across central London’. Then I wondered whether Tate systems would ever communicate seamlessly with NHM systems. The set-up was lengthy and took a day of effort, and the process of logging in through two opposing firewalls is never fast – but it does work. I have always established the connection from my usual workplace whilst logged into both systems, which makes for a complicated workspace on a large single screen. It does enables instant storage of the snipped or screenshot spectra and locator images into PowerPoint format on our own system, ready to be dropped into artwork reports and interpreted with other data. This data capture is far more time-efficient that the different workflows I have used in the NHM processing lab over the years. There’s an additional big advantage in being able to access other data and artwork information instantly through the Tate system whenever I need more sample information, which cannot be done in South Kensington without hogging a number of workstations at one time to make it possible.

Running the SEM remotely now works very smoothly, in fact. This month I have used it for two full days. The JEOL IT500 has clearly been designed for the purpose: its stage movement and auto functions for focussing and brightness/contrast make it far more possibly to drive the SEM from one keyboard and no joysticks than it would have been for earlier models. It helps to pre-plan the sample holder map to include groups of samples of the same height and stub size, and to ask for large groups of samples to be placed on the larger holder that fits in the chamber. The filament may still occasionally fail in the midst of analysing the most interesting sample of the day, but the support team is on call (now by Teams as well as e-mail and mobile) and they will replace it and refocus to average sample height. Remote training for new users must be more challenging for them, but that sounds perfectly feasible too.

Written by Dr Joyce H Townsend, Senior Conservation Scientist, Tate

Cleaning Modern Oil Paints Project

Tate is the newest recipient of the NHSF Gold Open Access grant for the publication of heritage science research. The grant enabled the publication of the research paper Scientific investigation into the water sensitivity of twentieth century oil paints’, available for free in Microchemical Journal. In this guest post, the paper’s authors tell us more about the Cleaning Modern Oil Paints project.

The Cleaning Modern Oil Paints project (CMOP) is a collaborative European research project, funded through the JPI Heritage Plus programme, which runs from June 2015 – May 2018. The project aims to investigate conservation challenges associated with twentieth and twenty-first century oil paintings in order to ensure that modern oil paintings continue to be fit for display for future generations.

Many unvarnished twentieth and twenty-first century oil paintings are exhibiting unusual water sensitivity. Water sensitivity can be defined as the unwanted removal of pigment and/or original material when a discrete cleaning test is carried out using a dampened cotton swab on the surface of a painting. Water sensitivity is not restricted to a particular oil-paint brand, or artist, and affects a broad range of paintings.

1949_3_Normal_4L
Winsor & Newton Artist Oil Colour swatches that were studied as part of the microchemical journal paper. Copyright Tate.

Water sensitivity is problematic for conservators, since many of the well-established methods for removing surface dirt (which naturally gathers over time) involves the skilled application of water based cleaning systems.  Since dry-cleaning methods, for example using dry brushes or specialist sponges, are not always particularly effective at removing soiling, water sensitivity can complicate or even prevent effective treatment. This is problematic as accumulated surface dirt can change the appearance of paintings e.g. through altering the saturation, intensity and gloss of paint passages, and can, over the longer term, contribute to other unwanted side-effects relating to ageing and deterioration.

The interdisciplinary CMOP team have been investigating the underlying causes of water sensitivity in modern oil paints. This information has been used to inform the systematic testing and evaluation of selected cleaning systems for use on water sensitive modern oil paintings, with the aim of informing conservators about the risks involved and how to minimise them.

Part of the CMOP research has involved the chemical analysis of a series of naturally aged modern oil paint micro-samples, taken from case study oil paintings and from historic Winsor & Newton (W&N) artists’ oil paint swatches.  The W&N paint swatches were originally produced by the manufacturer for quality control testing, and were subsequently donated to Tate by ColArt UK for research purposes.

W&W Artist Oil Colour swatches studied for the paper, shown in tungsten light (left) and UV light (right). Copyright Tate.

We are pleased to announce that the National Heritage Science Forum has kindly sponsored the Gold Open Access publication of a key CMOP research paper, entitled Scientific investigation into the water sensitivity of twentieth century oil paints, now published in the peer-reviewed Microchemical Journal. This describes an in-depth investigation into the chemical characteristics of water sensitive paint passages, and likely causal factors.

The research at Tate is led by Principal Conservation Scientist Dr Bronwyn Ormsby, with Post-doctoral Researcher Judith Lee, and with the support of Tate’s Collection Care Research. More information on the project and details of the key CMOP project dissemination event; Conference on Modern Oil Paints taking place on 23-25 May 2018, are available on Tate’s website.

Detail 2
Detail of a case study oil painting analysed as part of the project. Copyright Tate.


 

The paper Scientific investigation into the water sensitivity of twentieth century oil paints is co-authored by Judith Lee and Bronwyn Ormsby of the Tate Conservation Department, Ilaria Bonaduce, Francesca Modugno, Jacopo La Nasa and Klaas Jan van den Berg.

The National Heritage Science Forum provides Gold Open Access grants to help to open up access to heritage science research. This funding is available to employees, students and members of our member organisations – find out more.