Five minutes with… Simon Crutchley, Remote Sensing Development Manager at Historic England

Today in our British Science Week 2018 series, we sit down and talk to Simon Crutchley, Remote Sensing Development Manager at Historic England. Remote sensing is the science of obtaining information about an area from a distance, from aircraft or satellites scanning the earth. Read on to find out about his career and the most exciting things he’s been up to…

What’s your scientific/heritage background?

After studying classics at university and spending a few years digging on “the circuit”, as it was called, I got a job with what was then the Royal Commission on the Historical Monuments of England (RCHME) as an Air Photo Interpreter. Since that date I’ve worked in the remote sensing field for nearly 30 years, initially using standard aerial photographs, but over time working with lidar (airborne laser scanning) and more recently satellite imagery.

What’s your role at Historic England?

My primary role at Historic England (HE) is to look at new and cutting edge scientific techniques being used in remote sensing in areas outside heritage, and develop ways to utilise and integrate them into existing workflows. This is both for Historic England and the wider sector.

What’s been the most exciting / challenging thing you’ve worked on recently?

It’s probably a toss-up between two pieces; one is the work I’ve done to try and expand use of the lidar data, released by the Environment Agency (EA) in 2015, by the wider heritage sector, and particularly amateur archaeologists. For this I’ve put together some very basic instructions on the HE website to explain how to access the EA data and then process it so as to produce visualisations to help with recording and interpretation.

Fig_1_Comparative _lidar_visualisations
Comparison between the standard jpg tile provided by the Environment Agency through Flickr (left) and a more advanced visualisation technique, based on the raw data, in this case a Simple Local Relief Model (SLRM) (right). The SLRM is the result of a procedure that separates local small-scale features from larger landscape forms, thereby enhancing features of potential archaeological interest. Tile SU1257 – LIDAR data © Geomatics Group 2008.

The other is the work I’ve done to provide access to the data from the Cannock “Chase Through Time” project, which explored the rich history of Cannock Chase area of Outstanding Natural Beauty. There has been a strong volunteer aspect to the project and one of my key roles has been to create an online map, where it’s possible for users to view the results of the mapping carried out by HE against a surface model derived from the lidar data acquired for the project. Volunteers then have the possibility to download the original lidar data to carry out further analysis themselves and also to take ground photos of features of interest and add them to the map.

Fig_2_Cannock_StoryMap
A screenshot of the StoryMap web app for the “Chase Through Time” project for Cannock Chase, Staffordshire. All across the Chase, previous generations left their mark on the land – including one of the best-preserved First World War landscapes in England.

Who inspires you?

It may sound a bit corny, but people who try to make a difference; people like Bill Gates who devotes part of his admittedly massive fortune to addressing challenges not being tackled by other agencies, such as his malaria initiative.

What do you love most about your job?

The variety. One day I might be providing advice to a member of the public who thinks they may have seen something interesting on Google Earth or wants to know more about lidar; the next I’ll be working with raw lidar data, processing it to bring out subtle features of a landscape no-one has recognised before; the next I’ll be collaborating with other project members working out how to get the data from a project into GIS and shared with others.

In a single sentence, tell us what’s great about heritage science?

Heritage Science provides the data that enables us to understand what the world looked like in the past and how our ancestors interacted with it.

Fig_3_Savernake_DSM_DTM
Comparison of the Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from lidar data for part of Savernake Forest, Wiltshire. The DSM is based on the first return from the lidar pulse and represents the top of the canopy; the DTM is based on filtered data, designed to remove all “above ground” points such as vegetation. This view reveals the presence of an Iron Age enclosure together with several other features. Lidar © Forestry Commission; source: Cambridge University ULM (May 2006).